
						_	
報告日	2020/10/3	検体No	999	受入日	2020/10/1		
営業所		営業所コード		刈取日			
顧客名				顧客コード		1	
種類	サイレージ	草種	チモシー	番草	1番草	添加剤	ギ酸
圃場年数		サイロの種類	バンカー	自家区分	自家生産	産地	
備考	バンカーNO1			備考2			

一般成分	説 明 ※乾物中成分でみます
pН	サイレージ品質判定の目安 目標:pH4.2以下
水分(%)	飼料中の水分含量。水分80%以上になると酪酸発酵しやすい。
粗蛋白質(%)	飼料中の粗蛋白含量。放牧草やマメ科に多い。
DIP:分解性蛋白質(%)	第1胃内で分解される蛋白質。生草などに多い。
UIP:非分解性蛋白質(%)	第1胃内で分解されず、下部消化管で消化される蛋白質。
SIP:溶解性蛋白質(%)	第1胃内で早く分解される蛋白質。高水分で高くなる傾向。
結合蛋白質(%)	ADFに付着している蛋白質。消化器官では消化されず、糞中に排出される。
NDICP(%)	NDFに付着している蛋白質。ゆっくりと消化・吸収される。
TDN(%)	家畜が消化利用できる養分(エネルギー)。目標:61%以上
ADF(%)	セルロース+リグニン。消化性に影響(≒Ob)(目安:39%以下)
NDF(%)	飼料中の総繊維(≒OCW)(目安:65%以下)
OCW:総繊維(%)	飼料中の総繊維 (≒NDF)。刈り遅れると多くなる(目安:66%以下)。
OCC:細胞内容物(%)	細胞の中に含まれる養分でOCWを除いたもの(糖・デンプン・蛋白質・脂肪等)。消化性、栄養価が高い。早刈りは多くなる。
Oa:高消化性繊維(%)	OCW(総繊維)の内、消化されやすい部分(目安:6%以上)
Ob:低消化性繊維(%)	OCW(総繊維)の内、消化されにくい部分(目安:60%以下)
リグニン(%)	繊維の中で最も消化されにくい部分。刈り遅れるほど多くなる。
NFC(%)	OCCの中の炭水化物。刈り遅れると少なくなる。
デンプン(%)	コーンサイレージでは登熟の目安となる(黄熟期で30%以上)
WSC(%)	牧草に貯えられている水溶性炭水化物(単糖類、二糖類、ショ糖類)
粗脂肪(%)	中性脂肪など。エネルギー価が高い。刈り遅れると少なくなる。
硝酸態窒素(%)	堆厩肥や窒素過多などで高い値となる。植物の根本付近に多い。目安:0.2%以下

ミネラル	説 明 ※乾物中成分でみます
Ca:カルシウム(%)	骨の構成、筋肉の収縮、細胞内の情報伝達などに必要。
P: リン(%)	骨、核酸などを構成する成分のひとつ。
Mg:マグネシウム(%)	体内での酵素の活性化、神経伝達、骨の形成などの役割。
K:カリウム(%)	陽イオンのミネラル。DCAD値(※)を上げる成分。乾乳牛による過剰 摂取は乳熱などのリスクが高まる。
テタニー比	K/(Ca+Mg)。ミネラルのバランスをみる。2.2以上は注意。
粗灰分(%)	ミネラル、微量要素。土などの異物混入により高くなる(目安8%以下)
CI:塩素(%)	陰イオンのミネラル。血液のpHを下げる。DCAD値を下げる成分
S:イオウ(%)	陰イオンのミネラル。血液のpHを下げる。DCAD値を下げる成分
Na:ナトリウム(%)	陽イオンのミネラル。過剰摂取は血液のpHを高める。DCAD値を上げる成分
Cu:銅(mg/kg)	微量ミネラル。電子伝達、骨の形成、鉄の吸収・輸送、酸素代謝産物からの 細胞保護等に関連する各種酵素の構成要素。SやMoにより吸収阻害されやす い。
Fe:鉄(mg/kg)	微量ミネラル。ヘモグロビンの構成要素、酸素運搬、免疫応答にも関連。
Mn:マンガン(mg/kg)	微量ミネラル。発育成長、軟骨や骨の基質の産生に関与。繁殖にも関係。
Zn:亜鉛(mg/kg)	微量ミネラル。タンパクや核酸の代謝の他、黄体機能にも影響を及ぼす
Si:珪素 (mg/kg)	

追加分析項目	説 明 ※乾物中成分でみます			
NDF消化率(30時間)	NDFの内、30時間で消化されるNDFの割合			
NDF消化率(48時間)	NDFの内、48時間で消化されるNDFの割合			
NDF消化率(120時間)	NDFの内、120時間(5日間)で消化されるNDFの割合			
NDF消化率(240時間)	NDFの内、240時間(10日間)で消化されるNDFの割合			

酸組成	説 明 ※現物中成分でみます			
総酸(%)				
乳酸(%)	乳酸菌の代謝活動で生成される酸。ギ酸を添加したサイレージでは少ない。			
プロピオン酸(%)	好気性発酵で生成される酸。一般に生成量は少ない。			
酢酸(%)	好気性発酵で生成される酸。高いと二次発酵の危険性。			
酪酸(%)	酪酸菌の代謝活動で生成される酸。良質な発酵だと0.1%未満である。			
バレリアン酸(%)	有機酸のひとつ			
カプロン酸(%)	有機酸のひとつ			
VBN/N(%)	全窒素中のVBN(アンモニア態窒素など)の割合 目安:10%以下			
V-SCORE(点)	サイレージの品質評価法で、酢酸・プロビオン酸・酪酸 揮発性塩基態窒素割合から算出する。目標80点以上。			

【コメント】			

揮発成分補正	説 明 ※乾物中成分でみます
VBN由来CP量	VBN(揮発性脂肪酸:アンモニア態窒素など)由来のCP量
乾物補正係数	

VBN由来CP量を加えCPを補正する際は、CPとSIPにVBN由来CP量を加え、一般成分とミネラルに補正係数を乗じて下さい。